More photos of the garden

August 12th, 2016

A month has passed since I last posted photos of the garden, so here are a few more.

blog IMG_5387

The blue globes of echinops are so welcome as the summer progresses

blog IMG_5390

Meadowsweet is a lovely plant which smells delicious; I will also use it in the dye pot later.

blog IMG_5331

I wish I knew the name of this rose, which was here when we moved in and looks so lovely against the ivy.

blog IMG_5343

The hot shades of helenium are always a summer joy

blog IMG_5335

Saw-wort nearly ready to harvest for the dye pot

blog IMG_5339

Feverfew and Lychnis coronaria – so pretty together

blog IMG_5341

The scent of lavender fills the air and the bees love it

dyer's broom blog IMG_5348

Dyer’s broom just before harvesting

dyer's chamomile blog IMG_5322

The only dyer’s chamomile flowers I managed to save from the slugs & snails

goldenrod blog IMG_5352

Goldenrod is always welcome in my garden – and in the dye pot

hypericum blog IMG_5344

Hypericum flowers profusely and spreads happily. I sometimes use the prunings in the dye pot and they give pretty yellows – as if I don’t have enough sources of yellow!

Dyeing with safflower petals

August 9th, 2016

Recently I was asked to dye some samples using safflower petals from Nepal. The dyed samples are to be exhibited at Edinburgh Royal Botanic Garden as part of an exhibition highlighting the flora of Nepal.

Safflower is a thistle-like plant and nowadays it is grown mainly for the oil from its seeds, which is used in salad oils and margarine. It is also occasionally referred to as “bastard saffron” because it is sometimes used as a substitute for the true saffron from the stigmas of an autumn-flowering crocus. Stems of safflower are often sold for dried flower arrangements.

Safflower has been used by dyers for centuries. It was one of the dyes identified on early Egyptian textiles and in the East it was also used to make pigments and cosmetics. Safflower is remarkable because both a yellow and a red dye can be extracted from its petals.

safflower blog 3 IMG_2117

The photo above shows a range of yellows and reds from safflower petals.

The red dye was used from early times in India and Japan to dye cotton and silk shades of vibrant pinks and orange-red, which tend to fade with the passage of time and frequent exposure to light. The yellow dye, although deep and brilliant at first, also has relatively poor fastness. The red dye from safflower was used to dye the tapes tied around legal documents – hence the term “Red Tape”.

To dye with safflower, use at least equal weights of dyestuff and fibres. (Stronger colours will result if you use twice the weight of the fibres to be dyed.) No mordant is required for pinks and reds. Although no mordant is necessary for yellows, using an alum mordant will improve fastness.

Note: the same petals can be used for both yellow and red.

The yellow dye can be applied to animal and vegetable fibres. The red dye, which is applied at room temperature, is suitable for cotton, linen and silk, but not for wool, which does not take up the red colour.

Dyeing reds with safflower is not straightforward, so below are some details.

First of all the yellow dye must be extracted from the petals. It is advisable to wear rubber gloves or your hands will become stained. Tie the petals up in a piece of muslin or old net curtaining and immerse this bag of petals in a bucket or bowl of cool water and leave to soak for a while. Then start to press and squeeze the bag to extract the yellow dye. Remove the bag from time to time to check how much colour is still running out. When the water in the bucket is strongly coloured and the petals no longer yield much yellow dye, squeeze out the excess water from the bag. Remove the petals and put them into a pan or plastic container and reserve the yellow dye for a dye bath later.

To extract and then apply the red dye,  first cover the petals in your container with enough cold water for your subsequent dye bath. Then add enough washing soda to bring the solution to pH 11 and turn the petals reddish-brown. Leave for about 1 hour, then squeeze the petals well and strain off the liquid. Don’t throw away the petals because the same petals can be used again for paler pinks, following the same processes.

Then add enough clear vinegar or lemon juice to the strained-off liquid to bring the solution to pH 6. It should now be bright red and ready for use.

Do not heat the dye liquid, but add the fibres and leave them to soak for several hours or overnight. Rinse well and dry away from direct sunlight.

Silk treated in the red dye bath becomes coral or orange, rather than pink. This is because the acidic dye liquid that contains the red dye also contains a second yellow dye, which is taken up by silk but not by cotton.

safflower blog 2 IMG_2113 reds

The photo above shows from the top: coral/orange on silk and red on cotton

To produce pink shades on silk an extra procedure must be followed. First add some cotton fibres to the red dye liquid as above and leave them for several hours or overnight to absorb the red dye.

Then discharge this red dye from the cotton fibres back into a solution by placing the dyed cotton into an alkaline solution of water and washing soda at pH11. Soak the cotton in this solution for about 30 minutes or until the solution becomes red.

Then remove the cotton, acidify the solution to pH6 as described above and add the silk fibres. Leave them to soak until they have become pink.

safflower blog 3 IMG_2117

The photo above shows pinks on silk after the extra step.

Dyeing yellow with safflower petals is much simpler. Put the dye liquid into a dye pot, add the fibres to be dyed and heat to simmering point. Simmer for 30 to 45 minutes then turn off the heat & allow the fibres to cool down in the dye bath. Then remove them and wash and rinse them.

safflower for blog 1IMG_2112

This photo shows a range of yellows from safflower on wool (top), silk (centre) and cotton (bottom)

 

 

My garden in Summer

July 13th, 2016

Each year my garden seems to be different, with some old favourites returning and some new arrivals bringing fresh joys.

Below is a rose (Wedding Day, I think), which comes over from our neighbour’s garden. It rambles through the branches of the eucalyptus in the front garden and fills the air with delicious perfume that penetrates through the open windows to fill the bedrooms with fragrance. The bees love it.

IMG_5296blog x

I don’t know the name of the lovely pink climbing rose shown below. It was in the garden when we moved in six years ago and has beautiful delicate flowers, which sadly have little perfume. It looks so attractive rambling through the ivy and this is the corner of the garden where we often photograph the dyed skeins of South Downs Yarn.

IMG_5287 blog

Each year I look forward to the annual pelargoniums, with their brilliant reds. (I always seem to choose the reds, rarely the pink or white ones.) Another bonus is that they are rarely attacked by slugs and snails.

IMG_5254 BLOG

How I love the combination of the brilliant orange from the calendula and the blue of this hardy geranium.

IMG_5255 BLOG

Every year I look forward to the return of the hot reds and oranges of the helenium flowers.

IMG_5295 blog x

Below are the yellow spires of lysimachia punctata with feverfew (Tanacetum parthenium) in the foreground.

IMG_5294 blog x

My small dye garden continues to flourish, as the photos below show.

Here dyer’s broom (Genista tinctoria) is just coming into flower on the left, with hedge bedstraw (Galium mollugo) on the right and in the foreground climbing through the obelisk

IMG_5290 blog x

This year my wild madder (Rubia peregrina) is producing tiny flowers, which I hope will later produce some seeds.

IMG_5289 blog x

Just visible below on the lower left are the yellow flowers of lady’s bedstraw (Galium verum) with saw-wort (Serratula tinctoria) in bud on the right.

IMG_5292 blog x

 

 

Alkanet Root

June 22nd, 2016

One of my first experiences of using alkanet root (Alkanna tinctoria) was when I was asked to dye wool for making kneelers for a church in Wales. They wanted blue and a warm grey and from the dyed samples I sent they chose the colours from indigo and alkanet root. I was a little apprehensive, as I know alkanet doesn’t have the best reputation for light fastness, but as the kneelers would not be in much sunlight in their positions in the church and the customer was adamant she wanted to go ahead, I decided to risk it. This was about twenty years ago and as they were delighted with the results when the kneelers were completed and I haven’t had any complaints since, I assume the colours have remained pleasing.

In our search for lavender and purple colours for South Downs Yarn, preferably using dyes grown in the garden or harvested locally, Louise and I decided to experiment with alkanet root. It is important to use dyer’s alkanet (Alkanna tinctoria) and not plants commonly called alkanet, such as common alkanet (Anchusa officinalis) or green alkanet (Pentaglottis sempervirens), which do not have the dye properties of dyer’s alkanet.  It is not easy to source plants or seeds of Alkanna tinctoria, so we used dried dyestuff from France.

According to what I had read, the red pigment in alkanet root is not water soluble and can only be extracted using something with a high alcohol content, such as rubbing alcohol.

NB Great caution must be exercised when using alcohol, as it can easily catch fire and should not be used near a naked flame. Rubbing alcohol also has a rather unpleasant smell and gives off unpleasant fumes, so it may be advisable to wear a face mask to avoid inhaling these fumes.

Some references indicated an alum mordant should be used so, although I usually use alkanet without a mordant, I mordanted some wool with alum ready for the tests. I steeped the alkanet root in rubbing alcohol for a week and the liquid became a deep red, which seemed full of promise.

blog x2016-04-20 10.04.58

Above: the alkanet and rubbing alcohol solution ready for use

I strained the liquid into a dye pot, added more water and gently simmered the mordanted wool in this solution for about 30 minutes. Initially it looked as if the red colour would be absorbed by the fibres but sadly this was not the case and when the wool was removed from the dye bath it was green and definitely not red or pink or purple. Although this was a pleasant colour, it was not what I had been aiming to achieve, so naturally I was rather disappointed.

blog 20160522_153304

Above: the green skein produced from the alcohol-extraction alkanet dye bath (Photo courtesy of Louise Spong)

My next step was to try and work out where I had gone wrong. Following further study in reference books, I discovered that some dyers recommend keeping the temperature of the dye bath well below a simmer, so my mistake may have been in allowing the dye bath to simmer. Next time I will keep the temperature low and hope for better results. However, it will be a while before I try again with rubbing alcohol, as the unpleasant odour remained in the house for about a week afterwards. (I realise it was not sensible to use rubbing alcohol indoors and I will use it outdoors next time.)

I wanted to try some more experiments with alkanet, this time without extracting the colour in rubbing alcohol, so I decided to follow a recipe I found in Gill Dalby’s book Fast or Fugitive. After simmering the alkanet root in water to extract the colour, I added a little clear vinegar, stirred well and then added the wool samples, both unmordanted and alum-mordanted.

I also did a further test, this time without adding vinegar to the dye bath, and I applied an alkaline modifier, using soda ash, after dyeing.

The results of these experiments confirmed what I had already discovered when dyeing with alkanet, namely that the results can be very variable and much seems to depend on the mineral content of the water used for dyeing. When I travelled around the country teaching workshops, I sometimes used alkanet and I could never predict what shades and tones of colour would emerge from the dye pot, as the colours varied considerably from area to area.

The photo below shows the results of my tests.

blog P1030416

From left to right:

Skeins 1 & 2: dye bath + vinegar, no mordant and alum mordant

Skeins 3 & 4: dye bath followed by alkaline modifier, no mordant and alum mordant

The first skein has a pink tone, although I wouldn’t describe the colour as pink; the second and fourth skeins (both alum-mordanted) have a green tinge and it would seem that alum brings out the green tones.

Louise Spong of South Downs Yarn also did her own experiments with alkanet root and used cheap vodka as the alcohol to extract the colour. She used de-ionised water and steeped the roots for two weeks before using them. After my failure to achieve purple when I simmered the dye bath, Louise wisely kept the temperature of the dye bath below a simmer and she produced a pretty lavender colour. Success at last! (But sadly not mine.)

alkanet lavender 20160612_175340

Louise’s lavender skeins of South Downs Yarn (photo courtesy of Louise Spong)

Dyeing large quantities of woollen skeins

May 15th, 2016

A friend asked for help as she wanted to dye one kilo of handspun woollen skeins all the same colour. Dyeing such a large quantity of fibre is not easy, unless one has suitable equipment. I don’t have a pot large enough which could be heated and I no longer have a large Burco boiler, so the only option seemed to be to use a plastic container and opt for cool dyeing. Cool mordanting with alum is not a problem, as long as the fibres remain in the cool mordant bath for at least 24 hours and preferably longer. However, cool dyeing limits to some extent the dyes which can be used, as not all dyes can be successfully applied without heat.

The colour my friend chose was the pale green/yellow shown in the top sample below:

greens blog article

To achieve this colour, I decided to apply an alum mordant and then dye with weld extract, followed by indigo. I already have a large plastic container I keep for alum mordanting and fortunately it was just large enough for the quantity of wool, so I filled the container with cool water, added the alum mordant and left the yarn in the mordant bath for a couple of days.

I decided to use a large plastic garden trug as my dye pot, so I dissolved the weld extract in boiling water and added it to the cool water in the plastic trug.  I stirred well and then added the wetted-out yarn and allowed it to steep in the dye bath for about 24 hours, by which time it had become a suitable shade of yellow and was evenly dyed.

The final step was to make an indigo vat, also in the large plastic garden trug. The wool was then over-dyed in the indigo vat.

Although the trug seemed large enough for the quantity of wool being dyed with weld, I think the wool probably needed even more space in the indigo vat, as the results were somewhat variegated. However, the colour on the sample was also variegated and my friend was pleased with the results of our labours, so all was well.

The photo below shows the dyed skeins:

P1030362blog2

I then decided to dye a further kilo of wool, this time Romney Marsh fleece from local sheep, processed into yarn at Diamond Fibres in East Sussex. I wanted a colour suitable for a jacket that I could wear with most things and as I would have to dye without heat I chose to use buckthorn bark, which responds well to cool dyeing and which would, I hoped, give a caramel colour.

I simmered up about 200gms of buckthorn bark and then strained the dye liquid into the water in the trug. I added about 1 teaspoon of walnut hull extract in the hope that this might make the shade slightly browner in tone. (However, my initial feeling that walnut might not dye well without heat probably proved correct, as there is little evidence of any walnut influence in the final colour.) I added the wool skeins, which absorbed the dye more quickly than I had expected and I removed them after about one hour, rinsed and washed them and then left them to dry. These skeins also appear variegated but not this time because the trug was too small for the yarn. Buckthorn bark tends to change colour a little when left to dry in the light and it is important to open up the skeins and move them around, so they dry evenly. However, because the skeins were so dense and thick it was more difficult to open them up, so the final colour effect is variegated. Fortunately, I like this effect anyway and, although I had been aiming for a more caramel tone, I am also pleased with the colour.

blog2 P1030422

The final results.

Further alkaline extraction method tests and some puzzling results

April 18th, 2016

Following on from my recent alkaline extraction method experiments, I decided to try the method used by Krista Vajanto in her dissertation and described in my post of March 8th. So before adding a further set of samples, I left the dye baths to become acidic. This proved more difficult than I had expected, as the pH decreased a little and then remained stubbornly at around pH9 and refused to become more acidic. After a couple of weeks, I decided to add another set of samples anyway, which I left to steep for about 4 weeks. The dye baths looked very strongly coloured and I was hoping for well-dyed samples. Indeed, on removal from the dye baths the samples appeared deep in colour but most of the colour washed off, leaving the samples considerably paler than the first set, which had been in the alkaline dye bath for only 2 weeks.

I really don’t know how to interpret these surprising results. If the dye baths had been pH7 or below, I would have assumed that the acidic conditions had made the samples paler. This would have been in line with results from acidic modifiers which often result in the samples becoming paler. But in this case the dye baths were still alkaline, although less so than for the first samples. However, the dye baths had become slimy and viscous and I wonder if this is a sign that fermentation was taking place and the fermentation caused the colours to become paler?

P1030358 blog 2

This photo shows, from the top: birch bark, alder bark, white willow bark, tormentil root, with 4 samples for each. For each dye, the pair of samples on the left is from the first dye bath (2 weeks) and the pair on the right is from the second dye bath (4 weeks). In each pair, the top sample is alum-mordanted and the lower sample is unmordanted. The photo quite clearly shows how much paler the samples are from the second dye bath. Very puzzling!

Workshop at Plumpton College

March 27th, 2016

Earlier in March I taught a workshop for my dear friend Sue Craig and the students on her “Grow Your Own Colour” course at Plumpton College Brighton. Although I no longer lead workshops myself because of my physical limitations, I am always happy to work with Sue and her students because Sue provides all the materials and equipment and prepares everything in advance and she and her students do everything that is required as far as the hard physical work is concerned. I just sit and talk a lot and give the orders, which suits me very well!

This course was “Marvellous Madder”, which showcases the remarkable colour properties of this amazing dye plant. Last time I did this workshop I attempted too much and rather over-worked the students, so we decided to limit it to 26 wool samples this time.

We used the madder as follows:

Use about 80% madder and wash the madder pieces in cold water to remove some of the yellow and brown pigments. Then pour boiling water over the washed madder pieces and leave them to steep for about 45 seconds. Then strain this liquid into a dye pot and repeat this process twice more. This forms the first “pour-off” dye bath. (See second photo below) NOTE: I usually make this “pour-off” dye bath because it helps to use up some of the yellow and brown pigments that might not have been washed out and that can make the red colour from the main dye bath too dull or brown.

Then simmer the same madder dye pieces for about 30 minutes, strain off the dye solution and leave to cool slightly. Then add the fibres and leave them to steep for about 45 minutes to one hour. If necessary, the madder dye bath can be heated gently but keep it well below simmering point. NOTE: madder can safely be simmered to extract the dye colour but it is better to keep the temperature below simmering point after the fibres have been added, otherwise the colour may become too brown in tone. The same madder pieces can be simmered at least once more to make a further dye bath; indeed, the same madder pieces can often be re-used two or three times. So if we had had time to do this at the workshop, we could have doubled or even trebled the number of samples we achieved.

After dyeing, the samples were modified. (Instructions for making and using colour modifiers can be found in my books.)

As so often happens at workshops where time is limited, the colours achieved were not as deep and intense as I would have liked, although we did achieve a wide range of shades. Had we been able to allow the fibres to remain for longer in the dye bath, we would have had some much richer reds.

MM blog

This photo shows 24 wool samples.

Each group contains a sample of no mordant, alum mordant, tannin (oak gall) mordant and rhubarb leaf base, in that order. From left to right the groups are: no modifier, acidic (vinegar) modifier, alkaline (soda ash) modifier, copper modifier, iron modifier, iron modifier followed by alkaline modifier (2 modifiers applied in succession)

2016-03-05 15.23.18

These samples, also wool, were dyed in the dye liquid poured off when preparing the madder dye bath. From left to right: alum mordant, no mordant

 

ø;

Sue (left) and I obviously enjoyed ourselves!

More experiments with the alkaline extraction method

March 8th, 2016

I am very interested in the dyeing techniques of the past and recently I read Krista Vajanto’s dissertation on Dyes & Dyeing Methods in Late Iron Age Finland, http://urn.fi/URN:ISBN:978-951-51-1790-8, which contains some interesting details about dyes and possible methods for achieving reds (or reddish colours) in areas where madder and madder-related plants were not available. I corresponded with Krista before her dissertation was published and conducted some of my own tests, which I wrote about in my book  A Heritage of Colour. Since then, I have been able to obtain some more information from reading Krista’s dissertation and I have started to experiment further.

One method that would seem to have been used in the Iron Age in northern Europe is what Krista calls “the fermentation of tannins”. Apparently tannin-rich plant materials such as barks and the roots of tormentil (Potentilla erecta) will give red or rust colours if treated in wood ash water or a similar source of alkali. This is very similar to what I call the alkaline extraction method, which I use mainly with madder root and buckthorn bark. In my method, the barks or roots are soaked in wood ash water with no application of heat and the fibres are dyed in this alkaline solution, usually without application of heat or occasionally at a very low temperature. After some time, fermentation will begin and the dye solution will start to become neutral and then acidic.

From my experiments using this method with madder root and buckthorn bark, I have found that if the pH becomes too acidic the red colours become more orange or rust in tone so, in order to obtain true reds, it is important to keep adding alkali to maintain a pH of at least 9. The method Krista used for her experiments with the tannin fermentation method differs somewhat from mine; she fermented the plant materials before adding the fibres, rather than adding the fibres to the wood ash water at the same time as the plant materials. In her dissertation Krista describes how, in her tests, the plant materials were steeped for four weeks in the wood ash water, which started off at about pH10, and then as the time passed the pH values decreased from alkaline to neutral and then to acidic and pH6 as the plant materials fermented.  The fibres were then added to the dye liquid and steeped for two weeks at room temperature. So the main difference between the two methods is that Krista does not add the fibres to the dye solution until it has fermented and become acidic, whereas I add the fibres together with the dyestuff and maintain an alkaline pH while the fibres are steeping in the dye pot and I do not allow the solution to become acidic if I am aiming for reds.

For my latest experiments I decided to first try my method and then the one described by Krista. So I set up some dye baths in glass jars, using alder bark, birch bark, white willow bark and tormentil root. For comparison, I also conducted the same test with buckthorn bark, which I have already used in several tests using the alkaline extraction method. (See my 2013 post Buckthorn Bark)

I half-filled the jars with wood ash water and then added the dye material and wool samples.

AA jars blog postP1030294

The dye liquid became deep red after a day or so and I checked the pH of the solutions every day and added more alkali (wood ash water or soda ash) as necessary to maintain a pH of between 10 and 11.

The samples were finally removed after two weeks. Although they appeared deep red/pink as they were removed from the dye pot, the red colour gradually disappeared as the samples were rinsed and washed, leaving much softer, paler shades. This was interesting, as the colour remains red when using this method with buckthorn bark and does not rinse out.

Below is a photo of the colours achieved. (I would not describe any of the colours as “red”.) There are 2 skeins for each dye; the first skein in each pair is alum mordanted and the second skein is unmordanted.

alkaline extr. method 2016-03-08 11.45.22

From left to right: birch bark, tormentil root, white willow bark, alder bark.

I will now leave the dye solutions to become acidic and ferment before I add a further set of samples to each dye pot.  Once my next tests are completed, I will write a further post on this topic.

For interest, below is a photo of skeins dyed in an alkaline solution of buckthorn bark, following the same method as described in the tests above. The dye bath was kept at around pH10 to pH11 and these skeins are definitely red.

P1030322 blog 5 buckthorn bark

South Downs Yarn & colours from fungi

February 3rd, 2016

Part of the ethos underpinning South Downs Yarn, Louise Spong’s wool company, is a belief in the importance of making use of locally-available fleece, which can be traced back to the flocks from which it came and sometimes even to the individual sheep. The wool for Louise’s yarn comes from Southdown sheep and is sustainably sourced, single-flock wool from smallholders and farmers from the South Downs locality.

The same ethos determines the sources of the plants used to dye South Downs Yarn, so wherever possible the plants used are grown or harvested locally. This can sometimes be challenging, especially where plant sources of pinks and purples are concerned. Whilst virtually all other  colours can be readily produced from locally grown or harvested dyes, pinks and purples are more elusive. Pinks (and also purple) come mainly from the insect dyes, cochineal (found predominantly in parts of Central and South America) and sticklac (from India and South-East Asia). Madder root (Rubia tinctorum) and buckthorn bark (Rhamnus spp.) can sometimes give pinks in the coral range but will rarely give a true rose pink.

The most commonly used source of purple is the heartwood of logwood, Haematoxylon campechianum, from South or Central America. Purple can also be achieved from some species of lichen but lichens are protected in the wild and should preferably not be harvested for dyeing. Lichen purple is also not reliably fast and for that reason I would be reluctant to use this dye for anything I might want to sell or give to anyone else. Alkanet root (Alkanna tinctoria) will give a purple shade under certain conditions but the colours it gives are very variable and not always reliable.

Some time ago I discovered by chance another source of purple, when I added some walnut extract to a madder extract dye bath (both extracts from Earthues). This combination produced a pleasing purple-pink but, following further experiments, I found that this only occurs if the dyes are used in extract form and not when the chopped plant dye pieces are used. (See my earlier posts on this. Not what I was expecting & Walnut hulls & madder root again but no purples or pinks) I must conduct some more tests to see whether this colour can be regularly produced from this combination of extract dyes, as it could prove very useful.

To try and find other sources of pink and purple, I looked again through my dye sample books and decided to try dyes from fungi, in particular from species of Cortinarius.

For this South Downs Yarn fungi dyeing session we used Cortinarius semisanguineus, with an alum mordant and followed by an alkaline modifier. This gave pretty pinks. However, a further alum-mordanted skein followed by a copper modifier after dyeing did not give the purple tones I had hoped for, but a rather dull beige pink. I’m not sure why this was the case but I suspect the exhaust dye bath which we used was too weak to give a pink deep enough to produce the desired result from the copper modifier.

I also had the remainder of a small amount of the fungus Hapalopilus rutilans, kindly sent me from Finland by Leena Riihela for some tests for my most recent book  A Heritage of Colour, and which gives a pretty lavender purple dye colour. I had read that extracting the colour from Hapalopilus rutilans at pH9 to 10 would improve the colour, so I added a small amount of soda ash to bring the water to pH9 when I simmered the fungus to extract the colour. Unfortunately this proved not to have been such a good idea, as the extracted dye colour seemed paler rather than more intense and pink rather than purple in tone and it dyed the skein a rather pale dull pink. (I had probably also added too much fibre for the amount of dyestuff I had and this made the colour paler than I had wanted. Note to self: Don’t add too much fibre in future when you know there isn’t really sufficient dyestuff for a reasonably strong colour to be achieved, especially when you haven’t got enough dyestuff left to re-dye the fibres!) I re-simmered the used dyestuff together with the last remaining few pieces of fungus and used it to dye two small skeins, which this time became a prettier colour, but still pink in tone. I suspect this was because some soda ash solution had been absorbed by the pieces of fungi and had an effect on the dye bath when the fungus was re-processed. However, as this fungus is not readily available I doubt whether I would be able to obtain enough to make it a useful source of purple.

230 harvested Cortinarius semisanguineus p140 centre right

Cortinarius semisanguineus (photo courtesy of Leena Riihela)

cortinarius colours for blog20160129_143007

Shades of pink from Cortinarius semisanguineus (Alum mordant + alkaline modifier) The paler shades are from exhaust dye baths 1 & 2 (Photo courtesy of Louise Spong of South Downs Yarn)

cortinarius blog

This skein was dyed in the third exhaust of the Cortinarius dye bath. (Alum mordant + alkaline modifier)

241 Hapalopilus nidulans p144 lower left_edited-1

Hapalopilus rutilans (photo courtesy of Leena Riihela)

P1030293 blog cropped

Small skeins dyed in Hapalopilus rutilans after re-simmering the used dyestuff as described above.

for blog colours from Hapalopilus nidulans p144 lower right_edited-1

Colours from Hapalopilus rutilans without pH adjustment for colour extraction. The top sample is alum-mordanted & the lower sample is unmordanted.

 

These results indicate that Cortinarius spp. of fungi can be useful sources of pinks. I am also experimenting with the alkaline extraction method on birch bark to see whether this might yield a pink colour. More information about this will follow later.

Autumn Colours

November 2nd, 2015

Autumn seems to have come quickly this year and the garden reflects this change in the seasons. I love the colours of this helenium.

2015-07-27 13.33.38 blog 6

The forest pansy ( Cercis canadensis) always looks spectacular at this time of year, especially with the light shining through the leaves.

2015-10-13 10.41.30 blog     2015-10-13 10.43.08 blog

Even its fallen leaves have a beauty of their own

2015-10-13 10.39.31 blog

Autumn wouldn’t be the same without pumpkins

2015-10-30 13.07.47 blog 1

The autumn colours inspired me to dye some skeins of South Downs Yarn wool, using dyes harvested from the garden.

From left to right: dyer’s broom, buckthorn leaves plus madder root plus woad, dahlia flowers plus madder root, dahlia flowers (All alum mordant)

2015-10-22 13.25.54 blog 3