Archive for the ‘General Dye Information’ Category

One-year natural Dyeing Course at Ditchling Museum (4)

Thursday, July 26th, 2018

In this session we started sampling adjective dyes, which are dyes that require the use of a mordant, usually alum.

The dyes we used included two of the dyes introduced into Europe at the beginning of the 16th century from South & Central America. They are: Logwood (Haematoxylon campechianum) & Fustic (Chlorophora tinctoria). I had originally planned to use Brazilwood (Caesalpinia echinata), another dye introduced into Europe from South America at the beginning of the 16th century, but this is currently unavailable because it is becoming endangered.

So the third dye we used was Sappanwood (Caesalpinia sappan), from India, Malaysia and South-East Asia. Sappanwood is the form of brazilwood known from the 13th century as a red dye in the East, where it was called “brasil” or “bresil”, meaning “glowing like fire”. It was also known in Europe from the late Middle Ages and was imported by the land route. An indication of its importance can be seen by the fact that it gave its name to the country Brazil. When explorers arrived in that part of South America, similar trees were found growing there abundantly, so the country was named terra de brasil after the tree. It gives colours very similar to those from Caesalpinia echinata, but with a slightly pinker tone.

The mordants we used were 10% aluminium sulphate for the animal fibres and 5% aluminium acetate for the vegetable fibres. We also experimented with symplocos powder as a natural source of aluminium from symplocos leaves and we used this with logwood and sappanwood on both animal and vegetable fibres. (See my earlier post “Symplocos leaves as a source of aluminium mordant”)

Note: for improved colour fastness from logwood on animal fibres, it is advisable to use 24% alum. 

As with the substantive dyes we tested, we applied colour modifiers to the fibres after dyeing.

LOGWOOD 50% (alum mordant) Samples in the following order: Top – linen, silk, cotton Below – No modifier, acidic modifier, alkaline modifier, copper modifier, iron modifier

LOGWOOD 50% (symplocos mordant)  Samples as above for logwood with alum 

I think 50% logwood was too high a percentage for the colour variations from the modifiers to be clearly visible. We should have used no more than 30% to show the effects of the colour modifiers.

SAPPANWOOD 100% (alum mordant) Samples: top – cotton, linen, silk Below –  as for logwood above

SAPPANWOOD 100% (symplocos mordant)  Samples: top – cotton, linen, silk  Below –  as for logwood above

FUSTIC 100% (alum mordant) Samples: top – cotton, silk, linen  Below – as for logwood above 

I was a little disappointed with the fustic results. I had expected much stronger colours and I think we probably didn’t simmer the dyestuff long enough to extract all the colour potential. 

It is always difficult in workshops, when one so frequently seems to be working against the clock, to allow enough time for all the stages and processes involved in natural dyeing. When working at home, it is important to remember that each process needs time and should not be rushed, if one wants the best results. The “look” of the dye bath will often indicate whether more time is needed for colour extraction or colour application and experience is also an important factor.                                                    

At this session we also made our first indigo vat, using washing soda or wood ash water as the source of alkali and sodium hydrosulphite as the reducing agent. We also made a vat using a stock solution.

As an experiment I made a stock solution using wood ash water instead of caustic soda. (See my earlier post “Making and using an indigo stock solution”)

I mixed the indigo powder into a paste with hot water as usual, then added it to about half a litre of wood ash water, which I had first heated to about 50C. I then added sodium hydrosulphite and left the stock solution to reduce. After about an hour, it became a dull yellow-green colour and when I used it to make a vat it worked quite well.

The stock solution made using wood ash water as the source of alkali

INDIGO vat made using one tablespoon of stock solution Upper samples soaked for 2 minutes and the lower samples soaked for 5 minutes Order of fabrics: cotton, silk, linen

All photos above by Ross Belton

On the “Show & Tell” table this session was a display of the little books made by Helen Gibbs and dyed mainly with various tree barks. They are really beautiful and just wonderful to touch and open.

Photos by Helen Gibbs

 

More from the one-year natural dyeing course at Ditchling Museum (3)

Saturday, June 23rd, 2018

At this session we concentrated on dyeing with alkanet root (Alkanna tinctoria), cutch (Acacia catechu) and rhubarb root (Rheum spp.) All these dyes are substantive, so no mordant is necessary. However, we added an alum-mordanted wool sample to the alkanet dye bath, as this should give a lavender shade. As usual, we tested the dyes on wool, silk, cotton and linen fibres and applied modifiers after dyeing. As modifiers we used clear vinegar (acidic), soda ash (alkaline), copper water and iron water.

To simplify the process, we tied the alkanet root and the rhubarb root into muslin bags before adding the water to the dye pots. This means the dye bag can be removed from the dye pot once the colour has been extracted, so there is no need to strain off the dye liquid. The dyestuff in the bag can usually be simmered again for a further dye bath.

With the exception of cutch, the dye baths were prepared by simmering the dyestuff for about 40 minutes to extract the dye colour. Cutch is usually supplied as an extract in powder form, so it needs only to be carefully mixed with warm water and then stirred into the dye bath. It is important to make sure the cutch has dissolved completely, otherwise any loose particles will cause stains and spots on the fibres.

 

Alkanet root before being chopped (Photo by Jennifer Nightingale)

       

Light and dark cutch blocks before being made into powder (Photos by Jennifer Nightingale)

Cutch dye solution

Alkanet root dye solution

Rhubarb root dye solution

CUTCH SAMPLES 

Left: see below Centre: from top – linen, cotton, silk Right: paper samples

From left: no modifier, + acid, + alkali, + copper, + iron (photos by Ross Belton)

Alkanet root produces a less than pleasant aroma when simmered and without a mordant usually gives colours in the grey/green/brown range. The purple dye is best extracted by soaking the root in rubbing alcohol or vodka for several days or even weeks before simmering it for dyeing. However, the dyeing process produces unpleasant fumes and great care must be taken to keep the solution away from naked flames, as it could easily catch fire. And it cannot always be guaranteed to produce purples. (See my earlier post on Alkanet Root for more details.) Unfortunately, using an alum mordant did not guarantee purple either this time, so once again my experiments with alkanet had limited success.

In Japan, the roots of the purple gromwell plant, Lithospermum erythrorhizon, which look very like the roots of Alkanna tinctoria, are used and tend to more reliably produce lavender and purple shades.

ALKANET ROOT SAMPLES

Left: as above for cutch Centre: from top – linen, cotton, silk Right: paper sample

From left: as above for cutch (Photos by Ross Belton)

Rhubarb root is always interesting to use, as it reacts so positively to the modifiers and a wide range of shades can be achieved. And as an added bonus it doesn’t smell unpleasant either.

RHUBARB ROOT SAMPLES

Left: paper samples Centre: from top – linen, cotton, silk Right: as for cutch

From left: as above for cutch (Photos by Ross Belton)

Part of each session is devoted to assembling the dried samples from the previous month onto sample cards and it is always a pleasure to see the results from each session.

The tasks of mordanting and preparing samples is also ongoing and at this session we treated animal fibres with a rhubarb leaf base and also mordanted more fibres with tannin. We will be using these samples at a later date.

 

One-year natural dyeing course at Ditchling Museum: 2nd session

Sunday, May 27th, 2018

At the second session of this course we continued washing animal and vegetable fibres and mordanting them with aluminium and tannin. 

We also dyed wool, silk, cotton and linen samples using walnut leaves and walnut hulls (Juglans spp.) After dyeing, the samples were then treated with an acidic modifier (clear vinegar), an alkaline modifier (soda ash), a copper modifier and an iron modifier.

Dyes from walnut leaves and hulls do not require a mordant, so the samples had only been thoroughly washed before dyeing.

 

1. Samples removed from the walnut leaves dye bath                                                                                                            

  

2. Samples removed from the walnut hulls dye bath                                                                                                                    

  

3. Samples waiting to be modified, with the modifier solutions in bottles                                                                            

I usually fill bottles with the modifier solutions in advance, so they are ready to use when needed. It is easy to adjust the quantity added, according to the depth of colour change desired. Start by adding a little modifier solution and then add more if the colour change is too insignificant. Keep the unmodified sample to hand, in order to check that each modifier result gives a slightly different tone and all are a little different from the unmodified samples. With some dyes the differences in shade can be quite dramatic, while with others the differences may be difficult to discern.

 

4. Results from walnut leaves  

Above: cotton, silk, linen Below from left to right: no modifier, + acid, + alkali, + copper, + iron ( each with wool & silk on the left & cotton & linen on the right) 

(Photos 1, 2, 3, 4 by Ross Belton)

Some notes on dyeing with walnut hulls:

Fresh green walnut hulls, if used before they turn brown, can give lovely rich deep browns but dried walnut hulls usually give paler browns. As we only had dried walnut hulls, we conducted a further experiment with them to attempt to achieve a deeper brown by making the pH of the dye bath more acidic. So after simmering the walnut hulls to extract the colour, we added clear vinegar to about pH4 and then dyed some fibres in the usual way. This produced a deeper brown. 

  

5. Results from walnut hulls 

(Photo 5 by Zuzana Krskova)

Above: silk, linen, cotton Below as for walnut leaves with extra samples far right showing the results from the dye bath to which vinegar to pH4 had been added. Note that the colour on the wool and silk samples is considerably deeper but the cotton sample shows little difference.

Note: Adding some oak gall solution to the walnut hull dye bath also gives a deeper brown and this is an attractive grey/brown. The oak gall solution can be added to the walnut hull dye bath either in addition to the vinegar or instead of the vinegar. (As a rough guide, add about 250mls oak gall solution per 2 litres of dye solution.) I often use an oak gall exhaust solution in this way.

Although walnut leaves and hulls can be used without a mordant, one of the students added an alum-mordanted wool skein to the walnut leaf dye bath and was delighted to find it dyed a lovely rich yellow colour. Mordanted samples can be added to any substantive dye baths and will often give slightly different colours than those on unmordanted fibres. However, using mordanted fibres does not necessarily mean that the dyed colours will be more light-fast. Indeed, walnut leaves give faster colours without a mordant and using an alum mordant reduces the light fastness. (See Gill Dalby’s book Natural DyesFast or Fugitive for more details.)

In general, dyes from walnuts are more suitable for animal fibres, unless copper or iron modifiers are used. 

At this session we also had a “Show and Tell” table. The photos below show some of the items on the table, all made by the students using the natural dyes we have sampled so far. 

 

(Photo by Zuzana Krskova)

 

(Photo by Zuzana Krskova)

 

One Year Natural Dyeing Course at Ditchling Museum – First session

Thursday, April 26th, 2018

The first session of this one-year course was on March 18th and I was delighted when I met the 12 students we had selected. The range of skills they represent include weaving, bookbinding, papermaking, basketmaking, costume designing, feltmaking and several other art and craft practices. Their interest and enthusiasm, together with their searching, intelligent questions make the group both a joy and a challenge to work with.

At this first session, after the students had talked a little about themselves and their creative practices, I gave a general introduction to the history of natural dyeing and the most significant dyestuffs and outlined the contents of the course and some of the techniques we would be covering. I also explained the difference between dyes and stains and emphasised the importance of selecting dyes with good levels of fastness, especially if producing articles for sale. We then set up some mordant baths using aluminium potassium sulphate for the protein (animal) fibres and aluminium acetate for the cellulose (vegetable) fibres. We also used tannin as a mordant and at the May session we will embark on mordanting using aluminium from symplocos leaves (see my earlier post on symplocos) and preparing wool and silk fibres with rhubarb leaf base.

The first dye we used was buckthorn bark. This might have been alder buckthorn (Frangula alnus) or common buckthorn (Rhamnus cathartica) but, as the label merely stated buckthorn bark, I couldn’t be sure which it was. Both give similar, if not identical, colours, so it didn’t really matter. (Note to suppliers: It would be very helpful to have the botanical names on the packets for accurate identification.)

We used wool, silk, cotton and linen yarns and pieces of silk, cotton and linen fabric and, as buckthorn bark is a substantive dye, we didn’t use a mordant. After dyeing, the samples were modified using 4 modifiers: an acidic modifier (clear vinegar), an alkaline modifier (soda ash), and copper and iron modifiers. Two sets of samples remained unmodified, one for purposes of comparison and the other to be over-dyed with indigo at a later date. This method of sampling will be used for all the dyes we test, with a few variations for specific dyes.

The students also wound more skeins and cut more pieces of fabric for later sessions.

The photos below show some of processes and the results.

                                                                                                                                      Wool and silk samples in the buckthorn bark dye pot

                                                                                                                                     Modifying the samples

The above 2 photos courtesy of Susan D’souza

 

                                                                                                                                                      Buckthorn bark samples

                                                                                                                                                      Buckthorn bark samples from left to right: no modifier, copper modifier, iron modifier, acidic modifier, alkaline modifier

                                                                                                                                                        Close-up of some buckthorn bark samples

                                                                                                                                                        Some more buckthorn bark samples

                                                                                                                                    Buckthorn bark yarns from left to right above: no mod, copper, iron, acid, alkali; fabrics below: cotton, linen, silk

The above 5 photos courtesy of Ross Belton

Note: I am extremely limited in what I am able to manage physically and this course would not be possible without the support of my wonderful assistant, Deborah Barker. I am so grateful to her for all her help in making everything run smoothly.

 

Soya milk – meadowsweet samples

Wednesday, March 28th, 2018

At last I have found the meadowsweet samples missing from the earlier post on soya milk, so here they are:

Top from the left: cotton yarn, cotton fabric, linen fabric – all treated with soya milk & dyed in meadowsweet

Below from left: wool treated with soya milk & dyed in meadowsweet, wool mordanted with alum sulphate & dyed in meadowsweet

For more details see the post:

Soya milk / soymilk solution – what is it used for? Is it a mordant?

Soya milk / soymilk solution – what is it used for? Is it a mordant?

Monday, November 13th, 2017

I am rather puzzled by the many references I have seen recently to soya milk/soymilk “mordant”as I would not describe soya milk as a mordant, rather as an assistant in certain dyeing and fabric patterning processes. In my understanding, soya milk has the same purpose in Japan as buffalo milk has on the Indian Sub-Continent – in both cases the milk solution is used as a binder or sizing agent, applied to fabric before mordanting or dyeing, in order to increase absorption and to prevent wicking and improve the sharpness of the outlines when painting or printing mordants, pigments and dyes on fabrics. Unlike a true mordant, soya milk solution does not form a chemical bond. I have never known soya milk solution to be traditionally applied to yarns rather than to fabrics and as far as I know it is not commonly used on woollen fibres. However, as my experience of using soya milk solution is not extensive, I decided to conduct some tests.

I prepared the soya milk solution as follows, using information from John Marshall, (http://johnmarshall.to/H-Soymilk.htm), who is an expert in this field. I soaked one cup of soya beans overnight in three times their volume of water and then, when they had swollen, I strained the water off and rinsed the beans. I then added water to the beans (again three times their volume) and processed the mixture in a blender until the beans were well ground. I then poured the mixture through a piece of fine cloth spread over the top of a bowl and strained off all the liquid. I repeated this process three times with the same beans, each time adding the blended liquid to the previous solution. The final combined solution should be about the same consistency as cow’s milk and must be used fresh; as soon as it starts to become sour it should be discarded.

I then poured the soya solution into a bucket and added the washed and wetted materials. If necessary, more water should be added to allow the materials free movement in the liquid. I left the materials to soak for about 12 hours, moving them around from time to time, then removed them, squeezed them well and left them to dry. I repeated this process twice more but leaving the materials in the soya milk for only 5 minutes each time. I then left the materials to dry and cure for 2 weeks before using them. I then tested the materials treated with soya milk in dyebaths of madder and meadowsweet.

The madder samples are below.

 

MADDER ROOT Top from left: linen fabric, cotton yarn, cotton fabric, silk fabric, wool yarn (all soya milk pre-treatment & no mordant) Below from left: cotton fabric (no soya milk treatment & no mordant), wool yarn (alum mordant) I think these samples clearly show that, while the soya milk treatment improved the take-up of the dye, it did not act as a mordant in the way that alum does. That is to say, it did not give the red colour associated with madder on an alum mordant and produced the sort of colour one would expect from madder applied without a mordant. While soya milk is certainly useful in some circumstances as a pre-treatment for fabrics, I think it is misleading to imply it can be used instead of an actual mordant and this may lead to disappointment.

Note: the meadowsweet samples, which I have mislaid, showed even more clearly that the soya milk did not really act as a mordant. Meadowsweet gave only a very pale colour on both the soya milk treated materials and the untreated materials but it gave a bright yellow on the alum-mordanted materials.

PS Below are the meadowsweet samples – found at last!

Top from the left: cotton yarn, cotton fabric, linen fabric – all treated with soya milk & dyed in meadowsweet

Below from left: wool treated with soya milk & dyed in meadowsweet, wool mordanted with alum sulphate & dyed in meadowsweet

More about Symplocos leaves as a mordant

Monday, September 4th, 2017

Following on from my recent experiments with symplocos leaves as a plant source of aluminium for mordanting, I have done some further tests, mainly to try this plant mordant out on silk and cotton fibres.

After my last tests, I re-used the 50% symplocos mordant solution on a further wool skein to test whether the solution would still be viable as a mordant and I was pleased to note that, when I added a sample to madder and logwood dye baths, it produced a strong colour. This suggests that the 50% mordant solution could safely be re-used on a further batch of fibres.

This led me to wonder whether symplocos would still work if used at a lower percentage, so I decided to use 30% instead of 50%. I also decided to see whether the 30% mordant solution could be used more than once.

The main difference between mordanting animal fibres and vegetable fibres with symplocos leaves is the temperature at which the fibres are treated. Wool fibres are heated slowly to simmering point, held at this temperature for about an hour then cooled and rinsed. Vegetable fibres and silk are treated in a hot solution (60C/140F) but not simmered. The vegetable fibres must also first be treated in tannin.

I prepared two sample sets, each consisting of wool, silk and cotton fibres, and I treated the cotton fibres first in a tannin solution from oak galls. I then weighed the sample sets and worked out the weight of symplocos leaves I would need for 30% weight of fibres (WOF).

To prepare the symplocos mordant solution for all fibres, I simmered 30% symplocos leaves in water for about 45 minutes then strained the solution through a piece of very fine muslin cloth. At this point I saved the used leaves and re-simmered them, so that I could add this solution to the exhaust mordant bath after my tests and then use this on a further batch of fibres.

I divided the symplocos leaf solution into two pots – one for cotton and silk and the other for wool.

I slowly heated the mordant bath containing the wool to simmering point then held this temperature for about one hour. I then removed the pot from the heat and left the fibres to cool down.

The cotton and silk mordant bath was heated to 60C/140F and then removed from the heat. The fibres were then left to soak in the solution for about an hour.

I then dyed the fibres in madder and logwood dye baths.

The photos below show the results from the madder extract and logwood extract dye baths.

  MADDER

Left from top: 30% symplocos first mordant bath on cotton, silk, wool

Right from top: re-simmered leaves + exhaust mordant bath on cotton, silk, wool

Centre below : no mordant, 10% alum mordant

  LOGWOOD

Left from top: 30% symplocos first mordant bath on cotton, silk, wool

Right from top: re-simmered leaves + exhaust mordant bath on cotton, silk, wool

Centre below : 10% alum, no mordant

From these tests it seems that using the symplocos leaves at 30% WOF gives good results but that re-using the 30% solution may produce paler shades on some fibres, which could be less fast. Although 30% WOF works well on the first batch of fibres, I think it might be better to use 40 – 50% WOF if one intends to re-simmer the symplocos leaves and to add the solution to the exhaust mordant bath for re-use.

 

Symplocos leaves as a source of aluminium mordant

Monday, July 24th, 2017

Some plants are aluminium accumulators and can be used as an alternative source of alum for mordanting. Among them are clubmosses and I have written in an earlier post about how clubmosses were used in the past as an alternative mordant.

Another alternative source of alum comes from the leaves of  species of Symplocos. The leaves of Symplocos racemosa are used in parts of India as a source of aluminium mordant and in Indonesia Symplocos cochinchinensis is used in a similar way.

The Bebali Foundation is the organisation behind The Plant Mordant Project which aims to empower women in Indonesia by building partnerships for sustainability with rainforest communities and indigenous textile artists; the sale of dried Symplocos leaves for mordanting is part of this project.

The website www.plantmordant.org provides a wealth of further information on this project and also gives details of where to buy the powdered leaves and how to use them. This extract from their website explains the work of The Plant Mordant Project.

“The Plant Mordant Project offers natural dyers a unique opportunity to avoid mordants produced by industrial processes and make reliable colors 100% from plants. Powdered leaf from Symplocos trees can replace alum in conventional natural dye recipes and produce some exciting new colors. Natural dyers already chose plant dyes over synthetic dyes because they are aligned with their values, and the Plant Mordant Project offers an opportunity to extend the expression of these values by also using a plant-sourced mordant. 
.
At its source, the Plant Mordant Project builds partnerships for sustainability with rainforest communities and indigenous textile artists in Indonesia. Through its sourcing and sales of Indonesia’s traditional plant-sourced dye mordant, the Bebali Foundation (www.bebali.org) alleviates rural poverty and empowers women, saves rainforests, and supports the traditional textile arts. The Bebali Foundation brings to this project a decade of experience in the fields of conservation, indigenous culture, and rural livelihoods, while its partnerships with the Royal Botanical Gardens at Kew and the Indonesian Forestry Department, and its funding from the Ford Foundation bring world class scientific rigor and accountability.

I recently purchased some dried symplocos leaves from Couleur Garance in France and have begun to experiment with them. (www.couleur-garance.com)

Symplocos leaves can be used on all fibres; so far I have only used them on wool and I am pleased with the results. One thing to bear in mind is that Symplocos leaves also yield a yellow dye, so the yellow colour of the mordanted fibres may have an effect on the colours achieved from the dye pot. However, I found the colour difference on madder-dyed wool when compared with wool dyed on a traditional chemical alum mordant was very slight.

I used the powdered leaves at the rate of 50% weight of the fibres and simmered them in rainwater for about 30 minutes until they sank to the bottom of the pot. I used rainwater because the recipe stipulated “soft water” and I live in a hard water area. I then strained off the liquid and allowed it to cool to 40C as directed.

I washed the wool thoroughly and then soaked it in a weak solution of washing soda (soda ash) as directed in the recipe. (I suspect this washing soda soak is probably more relevant for use in areas where dyers may not have easy access to other wool washing materials. The important thing is to make sure the fibres don’t have any grease or dirt adhering to them.) I then added the wool to the cooled mordant solution and slowly raised the temperature to simmering point (95C) over a period of one hour. I allowed the solution to cool then removed the fibres and rinsed them. The fibres were a medium yellow colour, although the recipe said they would be a”pale shade of yellow”.

In order to be able to compare the effectiveness of Symplocos leaves as a mordant, I added samples mordanted with two other types of alum mordant – 10% aluminium sulphate and Kaltbeize AL, a cold mordant of aluminium formate, which I have written about in previous posts. I also added three further samples – two mordanted with different sources of tannin – blackberry leaves and shoots and oak galls – and one treated with rhubarb leaf solution.

 

This photo shows from l to r: 10% aluminium sulphate, Kaltbeize AL cold aluminium formate mordant (see a previous blog post), blackberry leaves, oak galls, rhubarb leaves, symplocos leaves

I then dyed all the skeins shown above in a madder dye bath.
The photo below shows the madder-dyed skeins in the same order as the undyed skeins above.
The photo below shows more clearly the difference in shade between the three types of alum mordant. The symplocos-mordanted skein is the third one from the left and it is only very slightly more orange in tone than the skeins from the other two alum mordants.
The second skein may appear slightly paler than the first skein but this is because the wool used for the second skein is more loosely spun and this may have caused the slight colour difference.
 My conclusion from this first experiment using Symplocos leaves as a mordant on wool is that they provide a useful alternative source of alum for mordanting, especially for those dyers who prefer to avoid manufactured chemicals and to use only plant materials. The colour obtained from madder on wool using a Symplocos mordant is virtually the same as the colour from an aluminium sulphate mordant and the initial yellow colour of the mordanted fibres seems to have an insignificant effect on the colour obtained.
I used the remaining Symplocos solution to dye two wool skeins an attractive shade of yellow but I intend to experiment with them to see if the remaining solution also contained enough aluminium to have a mordanting effect.

More thoughts on the 1-2-3 lime/fructose indigo vat

Monday, June 26th, 2017

I have been looking at various recipes for the 1-2-3 lime/fructose indigo vat, which was developed by Michel Garcia, and I made one interesting observation – in most of the recipes, the fructose (which is the reducing agent) is added before the lime (calcium hydroxide), which is the alkali. This surprised me as, when making 1-2-3 vats, I always add the alkali first. I wondered whether I was alone in this, so I was pleased to find that in Helen Melvin’s recipe the alkali is also added first. Helen is a very experienced dyer, with extensive practical knowledge of various types of indigo vats, and she has also attended courses led by Michel Garcia, so I felt I was in good company.

So why should I be surprised to find so many recipes in which the reducing agent is added before the alkali? Firstly, because it goes against what is, I think, the usual practice when making indigo vats; for example, when making an indigo stock solution, the alkali, in this case caustic soda, is added before the reducing agent; and when processing fresh woad leaves to make a vat, the alkali is added to the solution before the reducing agent. Indeed, the alkali is added first when making most types of indigo vats, so why would one change this order? The other reason why changing the usual order seems to me illogical lies in the name “1-2-3” vat, which seems to me to suggest that one would first add to the water one part indigo, then secondly one would add two parts lime (calcium hydroxide), the alkali, and thirdly three parts fructose, the reducing agent, thus maintaining the neat 1-2-3 order of both the proportions of ingredients and the order of adding them. (And also adding the ingredients in the same order as with other types of indigo vat.)

So does it actually make any difference whether one adds the alkali or the reducing agent first? One way to find out would be to do some experiments, so I made two small sample vats, for one adding the ingredients in the 1-2-3 order and for the other adding the ingredients in the 1-3-2 order. Otherwise, exactly the same weights of ingredients were added to each vat.

The photos below show the results. In each of the photos, the 1-2-3 order vat is on the left and the 1-3-2 order vat is on the right. The photos show the gradual progress of each vat and the final test samples. The vats each took about 1 hour to be ready for use.

The results indicate that the order in which the ingredients are added seems to make little, if any, difference to the final results. Although the vats didn’t look exactly the same at each stage, the dyed samples show that each vat produced samples of almost identical shades of blue. So I shall continue to add the ingredients in what seems to me to be the most logical order: 1-2-3.

For further information on indigo vats, see Helen Melvin’s excellent book “Indigo; The Colour of the Sea and Sky”, available from Helen at Fiery Felts (link on the right under “Useful Links”).

More Skeins for Ditchling Museum

Tuesday, May 16th, 2017

A couple of weeks ago I dyed a final set of samples for the Ethel Mairet project at Ditchling Museum of Art and Craft, following recipes in the 1916 edition of “Vegetable Dyes”.

Below are the details of the recipes and the results.

Samples of wool and silk were dyed following the instructions on p 103 Recipe no. 7 for MADDER Red for silk

A cold 25% alum mordant was applied and the fibres were allowed to soak in the cold alum mordant solution for 24 hours. 50% madder was placed in the dye pot, together with a handful of bran tied into a muslin bag, and water was added. The fibres were rinsed and then added to the madder dye bath. The temperature was raised gradually to just below a simmer, the heat was turned off and the fibres were then left to steep in the dye bath without further application of heat. When the dye bath was getting cool, heat was again applied until a simmer was reached. The heat was then turned off and the fibres left to steep overnight. They were then removed, rinsed and washed.

Further samples of wool and silk were mordanted with 2% copperas (iron) and dyed as above, as suggested in the above recipe for brown shades.

From the left: wool, silk, wool for brown, silk for brown

Samples of wool, silk, cotton and linen were dyed following the instructions on p110 Recipe no. 1 for WELD  Yellow for Silk

Wool and silk fibres were mordanted with 25% alum sulphate and the cotton and linen fibres were mordanted with 5% alum acetate. 200% weld was simmered for 15 minutes then the dye liquid was strained off into a dye pot and left to cool. When it had cooled a little, the silk and wool fibres were added and left to steep in the dye solution. They were then removed. The weld was simmered again with the addition of 2 teaspoons of soda ash and this solution was then strained and added to the first dye solution. The dyed fibres were added to this solution and allowed to steep until they had achieved a suitable depth of colour.

From the top: wool, silk, cotton, linen

Samples of wool and silk were dyed following the instructions on p121 for DYER’S BROOM

The fibres were mordanted with 25% alum sulphate. The dyer’s broom was simmered for 45 minutes to extract the colour, then strained. The fibres were gently simmered in the strained dye solution for 45 minutes and left to cool in the dye liquid. They were then removed, rinsed and washed.

From the left: wool, silk

Samples of wool, silk, cotton and linen were dyed following the instructions on p125 Recipe no. 9 for CUTCH Brown for Wool

The fibres were not mordanted. 15% cutch extract was dissolved in boiling water then gently stirred into a dye pot of water. The fibres were added and simmered in the solution for about an hour, then left to cool for a while.  2% iron (ferrous sulphate) was dissolved in boiling water then added to a pot of water. The cutch-dyed fibres were added to the iron solution and simmered for 15 minutes. They were allowed to cool, then rinsed and washed.

From the left: wool, silk, cotton, linen

Samples of wool, silk, cotton and linen were dyed following the instructions on p139 Recipe no. 8 for GREEN WITH INDIGO EXTRACT & WELD FOR WOOL.

Wool and silk fibres were mordanted with 25% alum sulphate and the cotton and linen fibres were mordanted with 5% alum acetate. They were first dyed blue using indigo extract (Saxon Blue). The fibres were simmered in this indigo solution for about 45 minutes then allowed to cool a little. The weld dye bath was prepared by simmering 100% weld to extract the colour. The solution was strained off and the indigo-dyed fibres were added to the weld dye bath and simmered for about 45 minutes. They were left to cool in the dye bath, then rinsed and washed.

NOTE: Although this recipe is specifically for wool, it was used on this occasion to dye all four fibre types. However, as noted by Ethel Mairet, indigo extract is less suitable for cotton and linen and these fibres did not take up much blue dye. The silk reacted better but the depth of blue on the silk was still less than that on the wool. This meant that the greens achieved were less blue and more yellow in tone.

From the left: wool, silk, cotton, linen